CMSC 426
 Principles of Computer Security
 Introduction to Cryptography (continued)

Last Class We Covered

- Introduction to crypto
- Definitions
- Ciphers
- Block ciphers
- DES
- 3DES
- AES

Any Questions from Last Time?

Today's Topics

- Block cypher modes
- Asymmetric encryption
- Diffie-Hellman
- RSA
- Math (for real this time)

Confusion and Diffusion

- Important concepts in cryptography and evaluating effectiveness
- Confusion
- Each bit of the ciphertext should depend on several parts of the key
- Obscures the connection between key and outcome
- Diffusion
- If a single bit of the plaintext changes, (statistically) about half of the bits in the ciphertext should change

Modes of Operation

Modes of Operation

- Block ciphers themselves are only good for encrypting a block
- Repeatedly applying a block cipher to larger amounts of data requires a mode of operation
- Some modes require an Initialization Vector (IV) to get started
- Different modes of operation exist for different purposes
- Efficiency
- Parallel encrypt and/or decrypt
- Encrypting a stream

Notation

- $\mathrm{E}_{\kappa}(P)$
- Encryption of plaintext P with key K using an arbitrary block cipher
- $\mathrm{D}_{K}(C)$
- Decryption of cipher C with key K using an arbitrary block cipher
- Arbitrary block cipher
- For example, DES, 3DES, or AES

Electronic Codebook Mode (ECB)

- Simplest and most naïve mode of operation
- Simply encrypts/decrypts each block with the same key
- Pros:
- En/decryption can be performed in parallel
- Cons:
- Requires padding of plaintext
- Low diffusion

$$
C_{i}=\mathrm{E}_{k}\left(P_{i}\right)
$$

$$
P_{i}=\mathrm{D}_{k}\left(C_{i}\right)
$$

Quick Note: Padding

- Padding involves adding garbage/filler to the end of the plaintext so that it perfectly fits within a block size
- Downside is not the space "wasted" on the extra text
- Rather, padding can allow an adversary to examine and learn things about the plaintext by examining the padded ciphertext
- Not something we'll go into in depth in class
- Read about "padding oracle attacks" for more information

Cipher Block Chaining Mode (CBC)

- Each block of plaintext is xored with the previous ciphertext block before being encrypted
- Uses an initialization vector for the first plaintext block
- Pros:
- Much better diffusion
- Cons:
- Requires padding

$$
C_{i}=\mathrm{E}_{\kappa}\left(P_{i} \oplus C_{i-1}\right)
$$

- Can't parallelize encryption
- But can parallelize decryption - why?

$$
P_{i}=\mathrm{D}_{K}\left(C_{i}\right) \oplus C_{i-1}
$$

Cipher Feedback Mode (CFB)

- Each block of plaintext is xored with the previous ciphertext block after the previous ciphertext is re-encrypted
- Plaintext never directly "touches" the encryption algorithm
- Uses an initialization vector for the first plaintext block
- Block cipher is now a "stream cipher"
- Uses the block cipher as a "key generator"
- Digits can be encrypted one at a time,

$$
C_{i}=\mathrm{E}_{K}\left(C_{i-1}\right) \oplus P_{i}
$$ which means no padding is necessary

- Encryption cannot be parallelized

$$
P_{i}=\mathrm{E}_{K}\left(C_{i-1}\right) \oplus C_{i}
$$

Counter Mode (CTR)

- Also works as a stream cipher
- Requires a pseudo-random seed, S, to function
- For each successive en/decrypt, the seed "counts" up by one
- Pros:
- Encryption can be parallelized, as seed simply counts up
- Decryption can be parallelized as well
- Plaintext does not need to be padded

$$
C_{i}=\mathrm{E}_{K}(S+i-1) \oplus P_{i}
$$

- Cons:
- ???

$$
P_{i}=\mathrm{E}_{\kappa}(S+i-1) \oplus C_{i}
$$

Comparison of Modes of Operation

	Parallel Encrypt	Parallel Decrypt	Padding Required	Stream Cipher	Repeats in Cipher
ECB	\checkmark	\checkmark	\checkmark		\checkmark
CBC		\checkmark	\checkmark		
CFB		\checkmark		\checkmark	
CTR	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$		$\boldsymbol{\checkmark}$	

${ }^{1}$ Encrypting structured or repeating plaintext results in repeating cipher blocks.

Enc. Algorithms of Modes of Operation

Images taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted

Diffie-Hellman

Shortcomings of Symmetric Encryption

- Symmetric key must remain secret to be secure
- But how do you communicate what the secret key is?
- Without already having a secret key?
- ???
- You can't!
- Need some way to share keys over an unsecured channel

Diffie-Hellman Key Exchange

- Named after Whitfield Diffie and Martin Hellman
- It is a way for two parties to
- Use insecure communication to
- Agree on a cryptographic key
- Without anyone else being able to figure out what it is
- Neither party "chooses" the key, but that doesn't matter
- They just need the same one
- How to achieve this?
- Math!

Basic Diffie-Hellman Algorithm

- Choose two non-secret values p and g
- p is prime
- g is generator, a primitive root modulo p (don't worry about this right now!)
- Each party
- Chooses an integer Y in the range 1 to $p-1$ (inclusive)
- Calculates $y=g^{\curlyvee} \% p$ and transmit y across the clear channel
- Use the other party's transmitted integer (x) to calculate $K=x^{\curlyvee} \% p$
- Both parties now have the same value K, for a symmetric key

Example Diffie-Hellman Algorithm

- Alice and Bob agree to use $p=37$ and $g=11$
- Normally they would use large numbers, but this is an example
- Alice chooses the integer $A=2$, Bob chooses $B=9$
- $a=g^{A} \% p \quad a=11^{2} \% 37 \quad a=10$
- $b=g^{B} \% p \quad b=11^{1} \% 37 \quad b=36$
- Over the clear channel, Alice transmits 10 and Bob transmits 36
- Each now calculates the key K
- Alice: $K=b^{A} \% p \quad K=36^{2} \% 37 \quad K=1$
- Bob: $K=a^{B} \% p \quad K=10^{9} \% 37 \quad K=1$

Diffie-Hellman: The Math

- Alice calculates $a=g^{A} \% p$
- Bob calculates $b=g^{B} \% p$
- They transmit these values of a and b to each other, then...
- Alice calculates $K=b^{A} \% p \quad$ same thing as $\left(g^{B} \% p\right)^{A} \% p$
- Bob calculates $K=a^{B} \% p \quad$ same thing as $\left(g^{A} \% p\right)^{B} \% p$
- Both of which simplify to $g^{A B} \% p$
" (Because ~*~math~*~)

Diffie-Hellman Security

- Only p, g, a and b are transmitted in the clear
- So any attacker could have those
- But to calculate K, they also need either A or B
- Which they could solve for with the formula $\log _{g} B \% p$
- But this is really hard to do when p is 600 digits long
- (For now - if this changes, we're all in deep trouble.)
- Private keys (A and B) should also be large numbers
- Makes them difficult to calculate for an attacker, or even for the other legitimate person in the communication

RSA (not a real acronym)

RSA Overview

- RSA stands for Rivest, $\underline{\text { Shamir, }}$ and Adleman, its inventors
- Is not necessarily a method for key exchange
- Is a form of asymmetric encryption
- Uses two separate keys: public and private
- Public key is available to anyone and everyone
- Private key must be kept secret

RSA Key Generation Algorithm

- Pick two secret prime numbers, p and q
- With those values, calculate $n=p^{*} q$
- Choose a valid public exponent e
- Software today uses 65537 (0×10001) to make calculations faster
- A valid e is not a factor of n, and must be less than $(p-1)^{*}(q-1) \quad\left(\sim^{*} \sim\right.$ math $\left.\sim^{*} \sim\right)$
- Calculate a private exponent d
- Such that e is congruent to $d \%(p-1)^{*}(q-1) \quad$ (more $\sim * \sim$ math $\sim * \sim$)
- Public key components are n and e
- Private key components are n and d (normally save p and q too)

Using RSA Keys

- Encryption
- The plaintext P is converted into an integer m
- (Don't worry about this for now)
- $C=m^{e} \% n$ (remember, e and n were our public key components)
- Decryption
- $m=C^{d} \% n$ (remember, d and n were our private key components)
- Mathematical proof
- Outside of the scope of this class (number theory, etc.)
- Read the paper if you're really interested

RSA Example: Key Generation

- Key generation:
- Choose $p=43$ and $q=59$
- Calculate $n=p^{*} q$ $n=43$ * $59 \quad n=2537$
- Choose $e=67$
- Calculate $d=1927$
- Public key: $\quad n=2537, e=67$
- Private key: $n=2537, d=1927$

RSA Example: Encryption/Decryption

- Now, someone wants to send you a message $m=42$
- To encrypt it, they use your public key: $n=2537, e=67$
- $C=m^{e} \% n \quad C=42^{67} \% 2537$
$C=1332$
- This ciphertext of 1332 is sent over a clear channel
- After receiving the message 1332, you want to read it
- To decrypt, you'll use your private key: $n=2537, d=1927$
- $m=C^{d} \% n$
$m=1332^{1927} \% 2537$
$m=42$

RSA Security

- An attacker has access to only n and e
- They need access to d to have a complete private key
- If they could factor p and q out of n, they could calculate d
- Fortunately, calculating the large primes that are the only factors for a large number is hard
- The larger the primes, the harder it is to factor
- Fun fact: the largest known prime is $2^{77,232,917-1}$
- It has 23,249,425 digits

RSA: Digital Signatures

- Encryption and decryption are inverses of each other
- If something is encrypted with the private key, it can be decrypted with the public key
- What does this allow us to do?
- State "only this person could have encrypted this"
- This is called a digital signature, and is meant to prove the message came from a specific individual
- This alone does not guarantee any confidentiality for the contents of the message

(Pseudo)-Random Number Generation

- rand () is not an acceptable (pseudo) random number generator for anything that has an actual purpose
- If you want something statistically viable, you need to use an actually good pseudorandom number generator (PRNG)
- If you're going to use the numbers for security-related purposes, use a cryptographically secure pseudorandom number generator (CSPRNG)
- If you don't know if it's a CSPRNG, it probably isn't

Quantum Computing

- If a sufficiently large quantum computer is ever built:
- RSA and Diffie-Hellman are completely broken by an algorithm called Shor's algorithm
- The bit length of symmetric ciphers is effectively halved
- If it would previously require 2^{128} computations to crack something, it would only require 2^{64} quantum computations

Announcements

- Lab 2 and Homework 2 are due Wednesday night
- Paper 2\&3 are due next Wednesday
- Exams are graded and available for pickup

